小編了解到,對于很多考生來說,成人高考高起點理科數(shù)學函數(shù)是一個難題,很多人遇到數(shù)學函數(shù)題型都會感覺頭疼,小編建議大家先打好基礎,多練題,下面是小編為大家整理的相關內容,一起來看看吧。
成人高考高起點理科數(shù)學函數(shù)問題難點解析
函數(shù)問題
函數(shù)的值域及其求法是近幾年高考考查的重點內容之一.本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會用函數(shù)的值域解決實際應用問題.
難點:
(★★★★★)設m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).
(1)******:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M.
(2)當m∈M時,求函數(shù)f(x)的最小值.
(3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1.
函數(shù)的單調性、奇偶性是高考的重點內容之一,考查內容靈活多樣.本節(jié)主要幫助考生深刻理解奇偶性、單調性的定義,掌握判定方法,正確認識單調函數(shù)與奇偶函數(shù)的圖象.
難點:
(★★★★)設a>0,f(x)= 是R上的偶函數(shù),(1)求a的值;(2)******: f(x)在(0,+∞)上是增函數(shù).
函數(shù)的單調性、奇偶性是高考的重點和熱點內容之一,特別是兩性質的應用更加突出.本節(jié)主要幫助考生學會怎樣利用兩性質解題,掌握基本方法,形成應用意識.
難點磁場
(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.
●案例探究
[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數(shù)g(x)=-3×2+3x-4(x∈B)的最大值.
指數(shù)函數(shù)、對數(shù)函數(shù)是高考考查的重點內容之一,本節(jié)主要幫助考生掌握兩種函數(shù)的概念、圖象和性質并會用它們去解決某些簡單的實際問題.
難點:
(★★★★★)設f(x)=log2 ,F(x)= +f(x).
(1)試判斷函數(shù)f(x)的單調性,并用函數(shù)單調性定義,給出******;
(2)若f(x)的反函數(shù)為f-1(x),******:對任意的自然數(shù)n(n≥3),都有f-1(n)> ;
(3)若F(x)的反函數(shù)F-1(x),******:方程F-1(x)=0有惟一解.
函數(shù)的圖象與性質是高考考查的重點內容之一,它是研究和記憶函數(shù)性質的直觀工具,利用它的直觀性解題,可以起到化繁為簡、化難為易的作用.因此,考生要掌握繪制函數(shù)圖象的一般方法,掌握函數(shù)圖象變化的一般規(guī)律,能利用函數(shù)的圖象研究函數(shù)的性質.
難點:
(★★★★★)已知函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍.
函數(shù)綜合問題是歷年高考的熱點和重點內容之一,一般難度較大,考查內容和形式靈活多樣.本節(jié)課主要幫助考生在掌握有關函數(shù)知識的基礎上進一步深化綜合運用知識的能力,掌握基本解題技巧和方法,并培養(yǎng)考生的思維和創(chuàng)新能力.
難點:
(★★★★★)設函數(shù)f(x)的定義域為R,對任意實數(shù)x、y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=-4.
(1)求證:f(x)為奇函數(shù);
(2)在區(qū)間[-9,9]上,求f(x)的最值.
18~23周歲
24~32周歲
33~40周歲
其他
高中及以下
中專
大專
其他
工作就業(yè)
報考公務員
落戶/居住證
其他
自學考試
成人高考
開放大學