指數函數、對數函數是成人高考考查的重點內容之一,對于數學這一科目,需要各位考生日積月累,細心也是做題的關鍵,平時可以多練習歷年真題,針對歷年高頻重點練題。下面是小編為大家整理的指數函數與對數函數的考生難點,一起來看看吧。
成人高考高起點數學(理)難點:指數函數和對數函數
難點
(★★★★★)設f(x)=log2 ,F(x)= +f(x).
(1)試判斷函數f(x)的單調性,并用函數單調性定義,給出******;
(2)若f(x)的反函數為f-1(x),******:對任意的自然數n(n≥3),都有f-1(n)> ;
(3)若F(x)的反函數F-1(x),******:方程F-1(x)=0有惟一解.
案例探究
[例1]已知過原點O的一條直線與函數y=log8x的圖象交于A、B兩點,分別過點A、B作y軸的平行線與函數y=log2x的圖象交于C、D兩點.
(1)******:點C、D和原點O在同一條直線上;
(2)當BC平行于x軸時,求點A的坐標.
命題意圖:本題主要考查對數函數圖象、對數換底公式、對數方程、指數方程等基礎知識,考查學生的分析能力和運算能力.屬★★★★級題目.
知識依托:(1)******三點共線的方法:kOC=kOD.
(2)第(2)問的解答中蘊涵著方程思想,只要得到方程(1),即可求得A點坐標.
錯解分析:不易考慮運用方程思想去解決實際問題.
技巧與方法:本題第一問運用斜率相等去******三點共線;第二問運用方程思想去求得點A的坐標.
(1)******:設點A、B的橫坐標分別為x1、x2,由題意知:x1>1,×2>1,則A、B縱坐標分別為log8x1,log8x2.因為A、B在過點O的直線上,所以 ,點C、D坐標分別為(x1,log2x1),(x2,log2x2),由于log2x1= = 3log8x2,所以OC的斜率:k1= ,
OD的斜率:k2= ,由此可知:k1=k2,即O、C、D在同一條直線上.
(2)解:由BC平行于x軸知:log2x1=log8x2 即:log2x1= log2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3×1.又x1>1,∴x1= ,則點A的坐標為( ,log8 ).
[例2]在xOy平面上有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,對每個自然數n點Pn位于函數y=2000( )x(0
(1)求點Pn的縱坐標bn的表達式;
(2)若對于每個自然數n,以bn,bn+1,bn+2為邊長能構成一個三角形,求a的取值范圍;
(3)設Cn=lg(bn)(n∈N*),若a取(2)中確定的范圍內的最小整數,問數列{Cn}前多少項的和最大?試說明理由.
命題意圖:本題把平面點列,指數函數,對數、最值等知識點揉合在一起,構成一個思維難度較大的綜合題目,本題主要考查考生對綜合知識分析和運用的能力.屬★★★★★級
題目
知識依托:指數函數、對數函數及數列、最值等知識.
錯解分析:考生對綜合知識不易駕馭,思維難度較大,找不到解題的突破口.
技巧與方法:本題屬于知識綜合題,關鍵在于讀題過程中對條件的思考與認識,并會運用相關的知識點去解決問題.
解:(1)由題意知:an=n+ ,∴bn=2000( ) .
(2)∵函數y=2000( )x(0bn+1>bn+2.則以bn,bn+1,bn+2為邊長能構成一個三角形的充要條件是bn+2+bn+1>bn,即( )2+( )-1>0,解得a<-5(1+ )或a>5( -1).∴5( -1)
(3)∵5( -1)
∴bn=2000( ) .數列{bn}是一個遞減的正數數列,對每個自然數n≥2,Bn=bnBn-1.于是當bn≥1時,Bn
錦囊妙計
本難點所涉及的問題以及解決的方法有:
(1)運用兩種函數的圖象和性質去解決基本問題.此類題目要求考生熟練掌握函數的圖象和性質并能靈活應用.
(2)綜合性題目.此類題目要求考生具有較強的分析能力和邏輯思維能力.
(3)應用題目.此類題目要求考生具有較強的建模能力.
18~23周歲
24~32周歲
33~40周歲
其他
高中及以下
中專
大專
其他
工作就業(yè)
報考公務員
落戶/居住證
其他
自學考試
成人高考
開放大學